Skip to main content
Log in

Microscopic approaches to nuclear structure: Configuration interaction

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

The configuration interaction (CI) approach to solving the nuclear many-body problem, also known as the interacting shell model, has proven to be powerful tool in understanding the structure of nuclei. The principal criticism of past applications of the shell model is the reliance on empirical tuning to interaction matrix elements. If an accurate description of nuclei far from the valley of stability, where little or no data is available, a more fundamental approach is needed. This starts with recent ab initio approaches with effective interactions in the no-core shell model (NCSM). Using effective-field theory for guidance, fully ab initio descriptions of nuclei up to 16O with QCD based NN, NNN, and NNNN interactions will be possible within the next five years. An important task is then to determine how to use these NCSM results to develop effective interactions to describe heavier nuclei without the need to resort to an empirical retuning with every model space. Thus, it is likely that more traditional CI applications utilizing direct diagonalization and more fundamental interactions will be applicable to nuclei with perhaps up to one hundred constituents. But, these direct diagonalization CI applications will always be computationally limited due to the rapid increase in the number of configurations with particle number. Very recently, the shifted-contour method has been applied to the Auxiliary-field Monte Carlo approach to the Shell Model (AFMCSM), and preliminary applications exhibit a remarkable taming of the notorious sign problem. If the mitigation of the sign problem holds true, the AFMCSM will offer a method to compute quantum correlations to mean-field applications for just about all nuclei; giving exact results for CI model spaces that can approach 1020-25. In these lectures, I will discuss modern applications of CI to the nuclear many-body problem that have the potential to guide nuclear structure theory into the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997); R.B. Wiringa, Nucl. Phys. A 631, 70c (1998); R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, Phys. Rev. C 62, 014001 (2000); S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 014001 (2001)

    Google Scholar 

  • P. Navrátil, B.R. Barrett, Phys. Rev. C 54, 2986 (1996); 57, 3119 (1998); P. Navrátil, B.R. Barrett, Phys. Rev. C 57, 562 (1998); P. Navrátil, B.R. Barrett, Phys. Rev. C 59, 1906 (1999)

  • P. Navrátil, G.P. Kamuntavicius, B.R. Barrett, Phys. Rev. 61, 044001 (2000)

    Google Scholar 

  • D.J. Dean, M. Hjorth-Jensen, Phys. Rev. C 69, 054320 (2004)

    Google Scholar 

  • Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century (National Acad. Press, Washington, DC, 2003)

  • J.J. Cowan, F.-K. Thielemann, J.W. Truran, Phys. Rep. 208, 267 (1991)

    Google Scholar 

  • P.J. Brussaard, P.W.M. Glaudemans, Shell-model applications in nuclear spectroscopy (North-Holland, Amsterdam, 1977)

  • R.D. Lawson, Theory of the nuclear shell model (Clarendon Press, Oxford, 1980)

  • E. Caurier, Acta Phys. Polon. B 30, 705 (1999)

    Google Scholar 

  • J.P. Vary, The Many-Fermion-Dynamics Shell-Model Code, Iowa State University (1992) (unpublished); J.P. Vary, D.C. Zheng, The Many-Fermion-Dynamics Shell-Model Code (1994) (unpublished)

  • W.E. Ormand, C.W. Johnson, REDSTICK, version 3.5, UCRL-CODE-230640

  • M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dungarra, MPI – The complete Reference, Vol. 1, The MPI Core (The MIT Press, Cambridge, MA, 1998); W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, M. Snir, MPI – The complete Reference, Vol. 2, The MPI Extensions (The MIT Press, Cambridge, MA, 1998)

  • B.S. Pudliner et al., Phys. Rev. C 56, 1720 (1997); R.B. Wiringa, Nucl. Phys. A 631, 70c (1998); R.B. Wiringa et al., Phys. Rev. C 62, 014001 (2000); S.C. Pieper et al., Phys. Rev. C 64, 014001 (2001)

  • R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996); R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    Google Scholar 

  • S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 014001 (2001)

    Google Scholar 

  • S.A. Coon, M.D. Scadron, P.C. Mcname, B.R. Barrett, D.W.E. Blatt, B.M.J. McKellar, Nucl. Phys. A 317, 242 (1979)

    Google Scholar 

  • S. Weinberg, Physica 96A, 327 (1979); Phys. Lett. B 251, 288 (1990); Nucl. Phys. B 363, 3 (1991)

  • C. Ordonez, L. Ray, U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994); Phys. Rev. C 53, 2086 (1996); U. van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999)

    Google Scholar 

  • D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003)

    Google Scholar 

  • P. Navrátil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007)

    Google Scholar 

  • F. Coester, Nucl. Phys. 7, 421 (1958); F. Coester, H. Kümmel, Nucl. Phys. 17, 477 (1960)

    Google Scholar 

  • G. Hagen, T. Papenbrock, D.J. Dean, A. Schwenk, A. Nogga, M. Wloch, P. Piecuch, Phys. Rev. C 76, 034302 (2007)

    Google Scholar 

  • C. Bloch, J. Horowitz, Nucl. Phys. 8, 91 (1958)

    Google Scholar 

  • S. Okubo, Prog. Theor. Phys. 12, 603 (1954)

    Google Scholar 

  • K. Suzuki, S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980); K. Suzuki, Prog. Theor. Phys. 68, 246 (1982); K. Suzuki, Prog. Theor. Phys. 68, 246 (1982) K. Suzuki, R. Okamoto, Prog. Theor. Phys. 70, 439 (1983)

  • P. Navrátil, E. Caurier, Phys. Rev. C 69, 014311 (2004)

    Google Scholar 

  • P. Navrátil, W.E. Ormand, Phys. Rev. C 68, 034305 (2003)

    Google Scholar 

  • P. Vogel, W.E. ormand, Phys. Rev. C 47, 623 (1993)

    Google Scholar 

  • Quantum Monte Carlo Methods in Physics and Chemistry, Nato Science Series C, Vol. 525, edited by M.P. Nightingale, C.J. Umrigar (Springer, Berlin, 1999)

  • G. Sugiyama, S.E. Koonin, Ann. Phys. 168, 1 (1986)

    Google Scholar 

  • J. Hubbard, Phys. Rev. Lett. 3, 77 (1959); R.L. Stratonovich, Dokl. Akad. Nauk. S.S.S.R. 115, 1097 (1957)

  • C.W. Johnson, S.E. Koonin, G.H. Lang, W.E. Ormand, Phys. Rev. Lett. 69, 3157 (1992); G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, Phys. Rev. C 48, 1518 (1993); W.E. Ormand, Prog. Theor. Phys. Supp. 124, 37 (1996); S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997)

  • A.K. Kerman, S. Levit, Phys. Rev. C 24, 1029 (1981)

    Google Scholar 

  • B.H. Wildenthal, in Progress in Particle and Nuclear Physics, edited by D.H. Wilkinson, (Pergamon, Oxford, 1984), Vol. 11, p. 5

  • N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Google Scholar 

  • M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C 65, 061301(R) (2002)

  • A. Schiller et al., Phys. Rev. C 68, 054326 (2003)

  • A.V. Voinov et al., Phys. Rev. C 74, 014314 (2006)

  • Y. Alhassid, D.J. Dean, S.E. Koonin, G. Lang, W.E. Ormand, Phys. Rev. Lett. 72, 613 (1994)

    Google Scholar 

  • E. Caurier et al., Phys. Rev. C 59, 2033 (1999)

  • D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Ormand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ormand, W. Microscopic approaches to nuclear structure: Configuration interaction. Eur. Phys. J. Spec. Top. 156, 13–36 (2008). https://doi.org/10.1140/epjst/e2008-00607-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2008-00607-1

Keywords

Navigation